AI Playground

Blended image

<AI_Playground/>

attn_weights = self.softmax

|

Hertzfelt Labs cli

React/TypeScript frontend with OpenAI API integration, custom terminal emulator engine, real-time message streaming, command history navigation, and optimized state transitions.

visitor@hertzfelt-labs — Hertzfelt Labs AI Terminal
██╗ ██╗███████╗██████╗ ████████╗███████╗███████╗███████╗██╗ ████████╗ ██║ ██║██╔════╝██╔══██╗╚══██╔══╝╚══███╔╝██╔════╝██╔════╝██║ ╚══██╔══╝ ███████║█████╗ ██████╔╝ ██║ ███╔╝ █████╗ █████╗ ██║ ██║ ██╔══██║██╔══╝ ██╔══██╗ ██║ ███╔╝ ██╔══╝ ██╔══╝ ██║ ██║ ██║ ██║███████╗██║ ██║ ██║ ███████╗██║ ███████╗███████╗██║ ╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚══════╝╚══════╝╚═╝ ██╗ █████╗ ██████╗ ███████╗ ██║ ██╔══██╗██╔══██╗██╔════╝ ██║ ███████║██████╔╝███████╗ ██║ ██╔══██║██╔══██╗╚════██║ ███████╗██║ ██║██████╔╝███████║ ╚══════╝╚═╝ ╚═╝╚═════╝ ╚══════╝
visitor@hertzfelt-labs:~$
Hertzfelt Labs AI Terminal v2.1.0🟢 AI Connected


AI-native Capabilities for the Multimodal frontier

A intelligent voice agent powered by Cartesia AI, Groq, META AI and deployed on Vercel

Cartesia AI

Cartesia's Sonic voice model is used for fast speech synthesis, which is streamed to the frontend.

Hertzfelt Labs Assistant

Click to chat with our assistat

META AI

Avoid squandering time redesigning each element

META AI

LLM powered by META AI Llama 3 8B: Light-weight, ultra-fast model.

const completion = await groq.chat.completions.create({
model: "llama3-8b-8192",
messages: [
{
role: "system",
content: `- You are Hertzfelt AI, 
a super AGI voice assistant.
Respond briefly to the user's request, 
and do not provide unnecessary information.

Custom System Prompt with Knowledge Base

Tailored to

META AI

Avoid squandering time redesigning each element

How Diffusion Models work

From Noise To Vision

We make it easy to understand the tech behind the magic here’s how generative diffusion models turn randomness into refined visuals.

Stage 1

Noise Injection

Diffusion models start by adding pure noise to an image. This randomization process teaches the model how to reverse chaos into structure.

+

Model Training Basics

+

Chaos-to-Structure Logic

Stage 2

Denoising Process

In hundreds or thousands of gradual steps, the model learns to remove noise, reconstructing meaningful patterns using learned data distributions.

+

Iterative Refinement

+

Learned Distributions

Stage 3

Final Render

As the denoising completes, the image sharpens into a fully generated output. Optional prompts can guide the style, subject, or structure.

+

High-Fidelity Output

+

Conditioned Generation

BG
Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security

Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security

Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security