<AI_Playground/>

attn_weights = self.softmax

|

Hertzfelt Labs cli

React/TypeScript frontend with OpenAI API integration, custom terminal emulator engine, real-time message streaming, command history navigation, and optimized state transitions.

visitor@hertzfelt-labs — Hertzfelt Labs AI Terminal
██╗ ██╗███████╗██████╗ ████████╗███████╗███████╗███████╗██╗ ████████╗ ██║ ██║██╔════╝██╔══██╗╚══██╔══╝╚══███╔╝██╔════╝██╔════╝██║ ╚══██╔══╝ ███████║█████╗ ██████╔╝ ██║ ███╔╝ █████╗ █████╗ ██║ ██║ ██╔══██║██╔══╝ ██╔══██╗ ██║ ███╔╝ ██╔══╝ ██╔══╝ ██║ ██║ ██║ ██║███████╗██║ ██║ ██║ ███████╗██║ ███████╗███████╗██║ ╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═╝ ╚══════╝╚══════╝╚═╝ ██╗ █████╗ ██████╗ ███████╗ ██║ ██╔══██╗██╔══██╗██╔════╝ ██║ ███████║██████╔╝███████╗ ██║ ██╔══██║██╔══██╗╚════██║ ███████╗██║ ██║██████╔╝███████║ ╚══════╝╚═╝ ╚═╝╚═════╝ ╚══════╝
visitor@hertzfelt-labs:~$
Hertzfelt Labs AI Terminal v2.1.0🟢 AI Connected


Hertzfelt labs voice assistant. Multimodal Capabilities for the AI-NATIVE frontier

Groq is used for fast inference of OpenAI Whisper (for transcription) and Meta Llama 3 (for generating the text response). Cartesia's Sonic voice model is used for fast speech synthesis, which is streamed to the frontend. VAD is used to detect when the user is talking, and run callbacks on speech segments. The app is a Next.js project written in TypeScript and deployed to Vercel.

Cartesia AI

Groq Logo

Groq

OpenAI (ChatGPT) Logo

OpenAI

MetaAI Logo

MetaAI

Vercel Logo

Vercel

MCP (Model Context Protocol) Logo

MCP

V0 (Vercel) Logo

V0 (Vercel)

Deploy

Hertzfelt Labs

How Diffusion Models work

From Noise To Vision

We make it easy to understand the tech behind the magic here’s how generative diffusion models turn randomness into refined visuals.

Stage 1

Noise Injection

Diffusion models start by adding pure noise to an image. This randomization process teaches the model how to reverse chaos into structure.

+

Model Training Basics

+

Chaos-to-Structure Logic

Stage 2

Denoising Process

In hundreds or thousands of gradual steps, the model learns to remove noise, reconstructing meaningful patterns using learned data distributions.

+

Iterative Refinement

+

Learned Distributions

Stage 3

Final Render

As the denoising completes, the image sharpens into a fully generated output. Optional prompts can guide the style, subject, or structure.

+

High-Fidelity Output

+

Conditioned Generation

BG
Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security

Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security

Hertzfelt Labs
AI

Features

Integrations

Updates

FAQ

Pricing

Labs

About

Blog

Careers

Manifesto

Press

Contact

HzLink

Examples

Community

Guides

Docs

Legal

Privacy

Terms

Security